

HDF5gateway for IgorPro

HDF5gateway makes it easy to read
a HDF5 file into an IgorPro folder,
including group and dataset attributes,
such as a NeXus data file,
modify it, and then write it back out.

Contents:

	HDF5gateway: HDF5 File I/O Support
	Reading

	Writing

	Validating

	Structure of the HDF5___xref text wave

	Groups and Folders

	Datasets and Waves

	Attributes and Wave Notes

	Examples

	Public Functions

	Private (static) Functions

	Testing and Development

	Administrative Matters
	Author

	Documentation

	Downloads

	Changes

	Known Problems

	Building the documentation

	License

HDF5gateway: HDF5 File I/O Support

Version: 1.0

HDF5gateway makes it easy to read
a HDF5 file into an IgorPro folder,
including group and dataset attributes,
such as a NeXus data file,
modify it, and then write it back out.

The goal was to make it easy to read a HDF5 file into an IgorPro folder,
including group and dataset attributes,
such as a NeXus data file,
modify it, and then write it back out.
This file provides functions to do just that.

Starting with utilities provided in the HDF5 Browser package, this file provides
these public functions:

	H5GW_ReadHDF5(parentFolder, fileName, [hdf5Path])

	H5GW_WriteHDF5(parentFolder, newFileName)

	H5GW_ValidateFolder(parentFolder)

and this function which is useful only for testing and development:

	H5GW_TestSuite()

Help is provided with each of these functions to indicate their usage.

Reading

An HDF5 file is read into an IgorPro data folder in these steps:

	The groups and datasets are read and stored into an IgorPro folder.

	Any attributes of these groups and datasets are read and assigned to IgorPro objects.

The data file is expected to be in the home folder (the folder specified by IgorPro’s home path),
or relative to that folder, or given by an absolute path name.

Writing

An IgorPro data folder is written to an HDF5 file in these steps:

	The IgorPro folder is validated for correct structure.

	The objects in the HDF5___xref text wave are written to the HDF5 file.

	Any folder attributes or wave notes are written to the corresponding HDF5 data path.

The data file is expected to be in the home folder (the folder specified by IgorPro’s home path),
or relative to that folder, or given by an absolute path name.

Validating

Call H5GW_ValidateFolder(parentFolder) to test if the
parentFolder in the IgorPro Data Browser has the proper structure to
successfully write out to an HDF5 file by H5GW_WriteHDF5(parentFolder, newFileName).

Structure of the HDF5___xref text wave

It is necessary to devise a method to correlate the name
of the same object in the HDF5 file with its representation in
the IgorPro data structure. In IgorPro, certain names are
reserved such that objects cannot be named. Routines exist
to substitute such names on data import to comply with
these restrictions. The routine HDF5LoadGroup performs
this substitution automatically, yet no routine is provided to
describe any name substitutions performed.

The text wave, HDF5___xref, is created in the base folder of
the IgorPro folder structure to describe the mapping between
relative IgorPro and HDF5 path names, as shown in the next table.
This name was chosen in hopes that it might remain unique
and unused by others at the root level HDF5 files.

HDF5___xref wave column plan

	column
	description

	0
	HDF5 path

	1
	Igor relative path

Example

Consider the HDF5 file with datasets stored in this structure:

	1
2
3
4
5

	/
 /sasentry01
 /sasdata01
 I
 Q

The next table shows the contents of HDF5___xref once this
HDF5 is read by H5GW_WriteHDF5():

	row
	HDF5___xref[row][0]
	HDF5___xref[row][1]

	0
	/
	:

	1
	/sasentry01
	:sasentry01

	2
	/sasentry01/sasdata01
	:sasentry01:sasdata01

	3
	/sasentry01/sasdata01/I
	:sasentry01:sasdata01:I0

	4
	/sasentry01/sasdata01/Q
	:sasentry01:sasdata01:Q0

Remember, column 0 is for HDF5 paths, column 1 is for IgorPro paths.

On reading an HDF5 file, the file_name and file_path are written to the
wave note of HDF5___xref. These notations are strictly informative and
are not used further by this interface. When writing back to HDF5, any
wave notes of the HDF5___xref wave are ignored.

About HDF5___xref:

	Only the folders and waves listed in the HDF5___xref text
wave will be written to the HDF5 file.

	The HDF5___xref text wave is not written to the HDF5 file.

When writing an HDF5 file with these functions,
based on the structure expected in an IgorPro data folder structure,
the HDF5___xref text wave is required. Each IgorPro object described
must exist as either an IgorPro folder or wave. A wave note is optional.
For each such IgorPro object, a corresponding HDF5 file object will be created.

Note

Important! Any IgorPro data storage objects (folders or waves)
not listed in HDF5___xref will not be written to the HDF5 file.

Groups and Folders

An HDF5 group corresponds to the IgorPro folder. Both are containers
for either data or containers.

In HDF5, a group may have attached metadata
known as attributes. In IgorPro, folders have no provision to store
attributes, thus an optional Igor___folder_attributes wave is created. The
folder attributes are stored in the wave note of this wave. For more information
about attributes, see the discussion of Attributes and Wave Notes below.

Datasets and Waves

Data is stored in HDF5 datasets and IgorPro waves.
Both objects are capable of storing a variety of data types
with different shapes (rank and length). Of the two systems,
IgorPro is the more restrictive, limiting the rank of stored data
to four dimensions.

Keep in mind that all components of a single dataset (or wave) are
of the same data type (such as 64-bit float or 8-bit int).

In HDF5, a dataset may have attached metadata known as
attributes. HDF5 attributes are data structures in their own
right and may contain data structures. In IgorPro, waves have
a provision to store attributes in a text construct called the wave note.
Of these two, IgorPro is the more restrictive, unless one creates
a new wave to hold the data structure of the attributes.
For more information
about attributes, see the discussion of Attributes and Wave Notes below.

The HDF5 library used by this package will take care of converting
between HDF5 datasets and IgorPro waves and the user need
not be too concerned about this.

Attributes and Wave Notes

Metadata about each of the objects in HDF5 files and IgorPro folders
is provided by attributes. In HDF5, these are attributes directly attached
to the object (group or dataset). In IgorPro, these attributes are stored as text in
different places depending on the type of the object, as shown in this table:

	object
	description

	folder
	attributes are stored in the wave note of a special
wave in the folder named Igor___folder_attributes

	wave
	attributes are stored in the wave note of the wave

Note

IgorPro folders do not have a wave note

HDF5 allows an attribute to be a data structure with the same rules for
complexity as a dataset except that attributes must be attached to a dataset
and cannot themselves have attributes.

Note

In IgorPro, attributes will be stored as text.

An IgorPro wave note is a text string that is used here to store a list of
key,value pairs. IgorPro provides helpful routines to manipulate such
lists, especially when used as wave notes. The IgorPro wave note is the most
natural representation of an attribute except that it does not preserve
the data structure of an HDF5 attribute without additional coding. This
limitation is deemed acceptable for this work.

It is most obvious to see
the conversion of attributes into text by reading and HDF5 file and then
writing it back out to a new file. The data type of the HDF5 attributes will
likely be changed from its original type into “string, variable length”. If this
is not acceptable, more work must be done in the routines below.

IgorPro key,value list for the attributes

Attributes are represented in IgorPro wave notes using a
list of key,value pairs. For example:

	1
2
3
4

	NX_class=SASdata
Q_indices=0,1
I_axes=Q,Q
Mask_indices=0,1

It is important to know the delimiters used by this string to
differentiate various attributes, some of which may have a
list of values. Please refer to this table:

	separator
	char
	description

	keySep
	=
	between key and value

	itemSep
	,
	between multiple items in value

	listSep
	\r
	between multiple key,value pairs

Note

A proposition is to store these values in a text wave
at the base of the folder structure and then use these value
throughout the folder. This can allow some flexibility with other
code and to make obvious which terms are used.

Examples

Export data from IgorPro

To write a simple dataset I(Q), one might write this IgorPro code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	// create the folder structure
NewDataFolder/O/S root:mydata
NewDataFolder/O sasentry
NewDataFolder/O :sasentry:sasdata

// create the waves
Make :sasentry:sasdata:I0
Make :sasentry:sasdata:Q0

Make/N=0 Igor___folder_attributes
Make/N=0 :sasentry:Igor___folder_attributes
Make/N=0 :sasentry:sasdata:Igor___folder_attributes

// create the attributes
Note/K Igor___folder_attributes, "producer=IgorPro\rNX_class=NXroot"
Note/K :sasentry:Igor___folder_attributes, "NX_class=NXentry"
Note/K :sasentry:sasdata:Igor___folder_attributes, "NX_class=NXdata"
Note/K :sasentry:sasdata:I0, "units=1/cm\rsignal=1\rtitle=reduced intensity"
Note/K :sasentry:sasdata:Q0, "units=1/A\rtitle=|scattering vector|"

// create the cross-reference mapping
Make/T/N=(5,2) HDF5___xref
Edit/K=0 'HDF5___xref';DelayUpdate
HDF5___xref[0][1] = ":"
HDF5___xref[1][1] = ":sasentry"
HDF5___xref[2][1] = ":sasentry:sasdata"
HDF5___xref[3][1] = ":sasentry:sasdata:I0"
HDF5___xref[4][1] = ":sasentry:sasdata:Q0"
HDF5___xref[0][0] = "/"
HDF5___xref[1][0] = "/sasentry"
HDF5___xref[2][0] = "/sasentry/sasdata"
HDF5___xref[3][0] = "/sasentry/sasdata:I"
HDF5___xref[4][0] = "/sasentry/sasdata:Q"

// Check our work so far.
// If something prints, there was an error above.
print H5GW_ValidateFolder("root:mydata")

// set I0 and Q0 to your data

print H5GW_WriteHDF5("root:mydata", "mydata.h5")

Read data into IgorPro

This is a simple operation, reading the file from the previous example into a new folder:

	1
2

	NewDataFolder/O/S root:newdata
H5GW_ReadHDF5("", "mydata.h5") // reads into current folder

Public Functions

H5GW_ReadHDF5(parentFolder, fileName, [hdf5Path])

Read the HDF5 data file fileName (located in directory data,
an IgorPro path variable) and store it in a subdirectory of
IgorPro folder parentFolder.

At present, the hdf5Path parameter is not used. It is planned
(for the future) to use this to indicate reading only part of the
HDF5 file to be read.

	String parentFolder:

	 	Igor folder path (default is current folder)

	String fileName:

	 	name of file (with extension),
either relative to current file system directory,
or include absolute file system path

	String hdf5Path:

	 	path of HDF file to load (default is “/”)
:return String: Status: “”=no error, otherwise, error is described in text

H5GW_WriteHDF5(parentFolder, newFileName)

Starting with an IgorPro folder constructed such that it passes the H5GW_ValidateFolder(parentFolder) test,
write the components described in HDF5___xref to newFileName.

	String parentFolder:

	 	Igor folder path (default is current folder)

	String fileName:

	 	name of file (with extension),
either relative to current file system directory,
or include absolute file system path

H5GW_ValidateFolder(parentFolder)

Check (validate) that a given IgorPro folder has the necessary
structure for the function H5GW__WriteHDF5_Data(fileID) to be
successful when writing that folder to an HDF5 file.

	String parentFolder:

	 	Igor folder path (default is current folder)

	return String:	Status: “”=no error, otherwise, error is described in text

H5GW_TestSuite()

Test the routines in this file using the supplied test data files.
HDF5 data files are obtained from the canSAS 2012 repository of
HDF5 examples
(http://www.cansas.org/formats/canSAS2012/1.0/doc/_downloads/simpleexamplefile.h5).

Private (static) Functions

Documentation of some, but not all, private functions is provided.

H5GW__OpenHDF5_RW(newFileName, replace)

H5GW__WriteHDF5_Data(fileID)

H5GW__SetHDF5ObjectAttributes(itemID, igorPath, hdf5Path)

H5GW__SetTextAttributeHDF5(itemID, name, value, hdf5Path)

H5GW__make_xref(parentFolder, objectPaths, group_name_list, dataset_name_list, base_name)

Analyze the mapping between HDF5 objects and Igor paths
Store the discoveries of this analysis in the HDF5___xref text wave

	String parentFolder:

	 	Igor folder path (default is current folder)

	String objectPaths:

	 	Igor paths to data objects

	String group_name_list:

	 	

	String dataset_name_list:

	 	

	String base_name:

	 	

HDF5___xref wave column plan

	column
	description

	0
	HDF5 path

	1
	Igor relative path

H5GW__addPathXref(parentFolder, base_name, hdf5Path, igorPath, xref, keySep, listSep)

H5GW__addXref(key, value, xref, keySep, listSep)

append a new key,value pair to the cross-reference list

H5GW__appendPathDelimiter(str, sep)

H5GW__findTextWaveIndex(twave, str, col)

	Wave/T twave:	correlation between HDF5 and Igor paths

	String str:	text to be located in column col

	int col:	column number to search for str

	returns int:	index of found text or -1 if not found

H5GW__OpenHDF5_RO(fileName)

	String fileName:

	 	name of file (with extension),
either relative to current file system directory
or includes absolute file system path

	returns int:	Status: 0 if error, non-zero (fileID) if successful

Assumed Parameter:

	
	home (path): Igor path name (defines a file system

	directory in which to find the data files)
Note: data is not changed by this function

H5GW__HDF5ReadAttributes(fileID, hdf5Path, baseName)

Reads and assigns the group and dataset attributes.
For groups, it creates a dummy wave Igor___folder_attributes
to hold the group attributes.

All attributes are stored in the wave note

Too bad that HDF5LoadGroup does not read the attributes.

	int fileID:	IgorPro reference number for this HDF5 file

	String hdf5Path:

	 	read the HDF5 file starting
from this level (default is the root level, “/”)
Note: not implemented yet.

	String baseName:

	 	IgorPro subfolder name to
store attributes. Maps directly from HDF5 path.

H5GW__HDF5AttributesToString(fileID, hdf5_Object, hdf5_Type, [keyDelimiter, keyValueSep, itemDelimiter])

Reads the attributes assigned to this object and returns
a string of key=value pairs, delimited by ;
Multiple values for a key are delimited by ,

All attributes are stored in the wave note

Too bad that HDF5LoadGroup does not read the attributes.

	int fileID:	IgorPro reference number for this HDF5 file

	String hdf5_Object:

	 	full HDF5 path of object

	int hdf5_Type:	1=group, 2=dataset

	String keyDelimiter:

	 	between key=value pairs, default = “r”

	String keyValueSep:

	 	key and value, default = “=”

	String itemDelimiter:

	 	between multiple values, default = ”,”

	returns str:	key1=value;key2=value,value;key3=value, empty string if no attributes

H5GW__HDF5AttributeDataToString(fileID, hdf5_Object, hdf5_Type, attr_name, itemDelimiter)

Reads the value of a specific attribute assigned to this object
and returns its value.

	int fileID:	IgorPro reference number for this HDF5 file

	String hdf5_Object:

	 	full HDF5 path of object

	int hdf5_Type:	1=group, 2=dataset

	String attr_name:

	 	name of the attribute

	String itemDelimiter:

	 	if the attribute data is an array,
this will delimit the representation of its members in a string

	returns String:	value, empty string if no value

H5GW__SetStringDefault(str, string_default)

	String str:	supplied value

	String string_default:

	 	default value

	returns String:	default if supplied value is empty

H5GW__AppendString(str, sep, newtext)

	String str:	starting string

	String sep:	separator

	String newtext:	text to be appended

	returns String:	result

H5GW__FileExists(file_name)

	String file_name:

	 	name of file to be found

	returns int:	1 if exists, 0 if does not exist

Testing and Development

Examples to test read and write:

	1
2
3
4
5
6

	print H5GW_ReadHDF5("root:worker", "simpleexamplefile.h5")
print H5GW_ReadHDF5("root:worker", "simple2dcase.h5")
print H5GW_ReadHDF5("root:worker", "simple2dmaskedcase.h5")
print H5GW_ReadHDF5("root:worker", "generic2dqtimeseries.h5")
print H5GW_ReadHDF5("root:worker", "generic2dtimetpseries.h5")
print H5GW_WriteHDF5("root:worker:simpleexamplefile", "test_output.h5")

H5GW__TestFile(parentDir, sourceFile)

Reads HDF5 file sourceFile into a subfolder of IgorPro folder parentDir.
Then writes the structure from that subfolder to a new HDF5 file: "test_"+sourceFile
Assumes that sourceFile is only a file name, with no path components, in the present working directory.
Returns the name (string) of the new HDF5 file written.

	String parentDir:

	 	folder within IgorPro memory to contain the HDF5 test data

	String sourceFile:

	 	HDF5 test data file (assumes no file path information prepends the file name)

Administrative Matters

Author

	Author:	Pete R. Jemian
jemian@anl.gov

Documentation

	html:	http://hdf5gateway.readthedocs.org

	pdf:	http://hdf5gateway.readthedocs.org/en/latest/_downloads/HDF5gateway.pdf

Downloads

IgorExchange

http://www.igorexchange.com/project/HDF5gateway

	Just the most recent IgorPro procedure file (text) from the development trunk:

	https://github.com/prjemian/hdf5gateway/blob/master/HDF5gateway.ipf

source code repository

https://github.com/prjemian/hdf5gateway

subversion repository retired 2015-05-14

https://subversion.xray.aps.anl.gov/small_angle/hdf5gateway

Changes

	version
	date
	comments

	0.1
	2012-11-24
	development version for user testing

	1.0
	2012-11-26
	initial production version

Known Problems

	HDF5 links are not handled properly.

Additional code will be necessary to identify linked items
and structures will be needed to establish/preserve this
information within IgorPro. Notably, linked datasets
will be replicated while linked groups will be empty on
reading into IgorPro. How external file links are handled
is not known at this time but likely, datasets will be
replicated, groups will not, and the association with the
external file willl not be preserved. The HDF5 XOP has
capabilities to write all these structures so it is likely
to provide a scheme to write links, once a scheme is devised
to describe this within IgorPro.

Building the documentation

The documentation for HDF5gateway is built from .rst files and from content in
the hdf5gateway.ipf IgorPro procedure file by a Python script called extractor.py,
located in the same directory.

The current documentation was built: Sep 27, 2017.

Required:

	Python

	Sphinx

	LaTeX

How to build the documentation

	change to the directory with the file extractor.py

	extract the docs from the .ipf file and build the HTML docs:

python extractor.py

	build the LaTeX and then PDF files:

make latexpdf

	copy the PDF file to the source directory and rebuild the HTML:

cp _build/latex/HDF5gateway.pdf ./
python extractor.py

License

Copyright (c) 2012 University of Chicago. All rights reserved.
See the LICENSE file for details.

Index

 A
 | D
 | E
 | F
 | G
 | H
 | I
 | P
 | R
 | T
 | V
 | W

A

 	
 	attributes

D

 	
 	datasets

 	
 documentation

 	building

 	html

 	pdf

E

 	
 	example, [1]

F

 	
 	folder

 	
 functions

 	private (static)

 	public

G

 	
 	
 GitHub

 	subversion; source code

 	
 	goal

 	group

H

 	
 	H5GW__addPathXref()

 	H5GW__addXref()

 	H5GW__appendPathDelimiter()

 	H5GW__AppendString()

 	H5GW__FileExists()

 	H5GW__findTextWaveIndex()

 	H5GW__HDF5AttributeDataToString()

 	H5GW__HDF5AttributesToString()

 	H5GW__HDF5ReadAttributes()

 	H5GW__make_xref()

 	H5GW__OpenHDF5_RO()

 	H5GW__OpenHDF5_RW()

 	
 	H5GW__SetHDF5ObjectAttributes()

 	H5GW__SetStringDefault()

 	H5GW__SetTextAttributeHDF5()

 	H5GW__TestFile()

 	H5GW__WriteHDF5_Data()

 	H5GW_ReadHDF5()

 	H5GW_TestSuite()

 	H5GW_ValidateFolder()

 	H5GW_WriteHDF5()

 	HDF5 links

 	HDF5___xref, [1]

 	home

I

 	
 	Igor___folder_attributes, [1]

 	
 	IgorExchange

P

 	
 	problems

R

 	
 	read, [1], [2]

T

 	
 	test, [1]

V

 	
 	validate, [1]

W

 	
 	waves

 	
 	write, [1]

 nav.xhtml

 Table of Contents

 		HDF5gateway for IgorPro

 		HDF5gateway: HDF5 File I/O Support

 		Reading

 		Writing

 		Validating

 		Structure of the HDF5___xref text wave

 		Groups and Folders

 		Datasets and Waves

 		Attributes and Wave Notes

 		IgorPro key,value list for the attributes

 		Examples

 		Export data from IgorPro

 		Read data into IgorPro

 		Public Functions

 		H5GW_ReadHDF5(parentFolder, fileName, [hdf5Path])

 		H5GW_WriteHDF5(parentFolder, newFileName)

 		H5GW_ValidateFolder(parentFolder)

 		H5GW_TestSuite()

 		Private (static) Functions

 		H5GW__OpenHDF5_RW(newFileName, replace)

 		H5GW__WriteHDF5_Data(fileID)

 		H5GW__SetHDF5ObjectAttributes(itemID, igorPath, hdf5Path)

 		H5GW__SetTextAttributeHDF5(itemID, name, value, hdf5Path)

 		H5GW__make_xref(parentFolder, objectPaths, group_name_list, dataset_name_list, base_name)

 		H5GW__addPathXref(parentFolder, base_name, hdf5Path, igorPath, xref, keySep, listSep)

 		H5GW__addXref(key, value, xref, keySep, listSep)

 		H5GW__appendPathDelimiter(str, sep)

 		H5GW__findTextWaveIndex(twave, str, col)

 		H5GW__OpenHDF5_RO(fileName)

 		H5GW__HDF5ReadAttributes(fileID, hdf5Path, baseName)

 		H5GW__HDF5AttributesToString(fileID, hdf5_Object, hdf5_Type, [keyDelimiter, keyValueSep, itemDelimiter])

 		H5GW__HDF5AttributeDataToString(fileID, hdf5_Object, hdf5_Type, attr_name, itemDelimiter)

 		H5GW__SetStringDefault(str, string_default)

 		H5GW__AppendString(str, sep, newtext)

 		H5GW__FileExists(file_name)

 		Testing and Development

 		H5GW__TestFile(parentDir, sourceFile)

 		Administrative Matters

 		Author

 		Documentation

 		Downloads

 		Changes

 		Known Problems

 		Building the documentation

 		License

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

